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Abstract

The aim of many machine learning applications is the modelling of data. We may wish to perform

classification of images, clustering of users by preference for recommender systems, or regression

for predicting financial markets; for all of these and limitless other applications, our goal is to learn a

model from some given data. In some cases, we are content with so-called ‘discriminative’ models,

those where we care only about learning the predictor function of interest. Generally though, the

aim is to learn the true underlying model, the system that generated our data and that describes

a real-world process or phenomenon. These are ‘generative’ models, as they not only allow us

to learn systems and make predictions, but also to generate synthetic data similar to that upon

which it was trained (Jebara 2012). We obtain such a generative model by performing Bayesian

posterior inference: choose a distributional family to model the data, and learn the distribution of

model parameters conditioned on that data.

The difficulty in practical inference applications is that in all but the most simple cases, we

must solve an intractable integral. If we cannot evaluate the posterior analytically, we must resort

to approximation, which can be broadly divided into two categories: stochastic methods such as

Monte Carlo, which guarantee convergence but are often slow and inefficient, and deterministic

methods (Bishop 2006). This report focuses on the deterministic approach, also called variational

inference (VI; Jordan et al. 1998; Wainwright and Jordan 2007), which frames posterior inference

as an optimisation problem, and often approximates the posterior much more quickly and efficiently

than by random sampling methods.

As an optimisation problem, we can approach VI with specialised algorithms such as coordinate

ascent variational inference (Bishop 2006), or general-purpose algorithms like stochastic gradient

descent (Robbins and Monro 1951) – in either case, we will find gradients, their calculation and

estimation, at the centre of the method.

In this report we provide a review of VI, with a particular focus on gradient descent algorithms,

estimating accurate gradients, and how this affects the accuracy of posterior approximation and

convergence rates. We also consider Bayesian quadrature (probabilistic numerical integration),

its current applications to VI and possible novel uses, though experimentation in this area was

unfortunately limited due to time constraints and negative results.
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1 Introduction

The aim of many machine learning applications is the modelling of data. We may wish to perform

classification of images, clustering of users by preference for recommender systems, or regression

for predicting financial markets; for all of these and limitless other applications, our goal is to learn a

model from some given data. In some cases, we are content with so-called ‘discriminative’ models,

those where we care only about learning the predictor function of interest. Generally though, the

aim is to learn the true underlying model, the system that generated our data and that describes

a real-world process or phenomenon. These are ‘generative’ models, as they not only allow us to

learn systems and make predictions, but also to generate synthetic data similar to that upon which

it was trained (Jebara 2012). Our generative model takes the form of a probability distribution,

and will often be of a known or chosen family of distributions parameterised by some vector of

model parameters θ. Fully defining our model, then, amounts to learning the most appropriate

θ, given some data X. Maximum likelihood estimation offers one simple approach to this, by

choosing model parameters θ̂MLE that maximise likelihood p(X|θ), but this is only a point estimate

and is therefore uninformative (Bishop 2006). A superior approach is posterior inference: learning

the distribution of model parameters conditioned on data. We obtain the posterior using Bayes’

theorem:

p(θ|X) =
p(X|θ)p(θ)
p(X)

, (1.1)

where p(X|θ) is the model likelihood, p(θ) is the prior over model parameters, and p(X) is our

model evidence. As we know the distributional family of our generative model, we usually know

the likelihood for given θ, and are able to evaluate it. The prior, which encodes any knowledge

or beliefs we may have about the model parameters, is chosen by us. This leaves the model

evidence, also known as marginal likelihood, which is effectively a weighting of likelihoods over all

possible θ:

p(X) =

∫
p(X|θ)p(θ)dθ. (1.2)

The difficulty in practical inference applications is that in all but the most simple cases, this integral

is intractable, meaning that we cannot normalise the posterior. If we cannot evaluate the poste-

rior analytically, we must resort to approximation, which can be broadly divided into two methods:
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stochastic and deterministic (Bishop 2006). Stochastic methods use sampling-based numerical in-

tegration to approximate the intractable evidence, typically using Monte Carlo integration, or some

variant of this such as Markov chain Monte Carlo (Hastings 1970; see Section 7.2.1). Monte Carlo

integration asymptotically converges to the true integral for sufficiently many samples, but is often

too slow for large and/or high dimensional datasets, and is inefficient in its use of data (O’Hagan

1987). Conversely, deterministic approximate inference, also called variational inference (VI; Jor-

dan et al. 1998; Wainwright and Jordan 2007), frames posterior inference as an optimisation

problem, and allows the model evidence and posterior to be approximated simultaneously, much

more quickly and efficiently than by random sampling methods.

As an optimisation problem, we can approach VI with specialised algorithms such as coordinate

ascent variational inference (Bishop 2006), or general-purpose algorithms like stochastic gradient

descent (Robbins and Monro 1951) – in either case we will find gradients, their calculation and

estimation, at the centre of the method.

In this report we provide a review of VI, with a particular focus on gradient descent (GD) algo-

rithms, estimating accurate gradients, and how this affects the accuracy of posterior approximation

and convergence rates. Throughout, we will focus our analysis on the problem of point clustering,

a foundational unsupervised learning problem with applications across a wide range of fields, us-

ing a Bayesian Gaussian mixture model (GMM; Ghahramani, Beal, et al. 1999). We note that this

is primarily a demonstrative example; while used broadly, GMMs are a relatively simple application

of VI, with many of the key equations and expectations being available in closed form. We do not

have this luxury for many real-world and state-of-the-art applications of VI, such as variational au-

toencoders (Kingma and Welling 2014), and so we also consider a general treatment of gradient

estimation for stochastic VI.

Section 2 provides an overview of variational inference, deriving the variational objective func-

tion to optimise, and introduces the coordinate ascent and gradient descent algorithms. Section

3 introduces the variational mixture of Gaussians and derives coordinate ascent variational in-

ference updates for this problem, as well as gradients. Section 4 introduces the idea of natural

gradients and ‘stochastic variational inference’ (Hoffman et al. 2013), an update to classical VI

for big data applications that utilises mini-batching to estimate gradients. Section 5 broadens our

consideration of stochastic gradient descent VI to consider two widely used gradient estimators,
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score function and pathwise, as well as briefly looking at alternative variational objective functions

that produce lower-variance gradient estimates. Section 6 details experimental results comparing

the variational inference algorithms covered in this report. Lastly, Section 7 contains a theoreti-

cal overview of Bayesian quadrature, a probabilistic approach to numerical integration, reviews its

uses in variational inference and considers potential areas for future research.

2 Variational Inference

In this section we derive the variational lower bound, our objective function we wish to maximise in

variational inference. We then introduce two general VI algorithms: coordinate ascent variational

inference and gradient descent.

2.1 The variational lower bound

We consider our standard Bayesian inference problem with a vector of datapoints X distributed by

a model parameterised by a real vector of variables θ. We now introduce a new vector of latent

variables Z, of equal size to X and representing some unknown information about each datapoint.

Both θ and Z are unobserved variables and can be taken together, but for this report and our

GMM example it is convenient to separate them. As the elements of Z scale with X and contain

information about individual datapoints, we also call them ‘local’ variables, whereas θ is constant

with the size of X and describes the behaviour of the overall model, and so is a vector of ‘global’

variables. Our posterior inference equation is therefore

p(Z, θ|X) =
p(X|Z, θ)p(Z, θ)∫

Z

∫
θ p(X|Z, θ)p(Z, θ)dZdθ

, (2.1)

and our goal is to approximate it.

2.2 The variational lower bound

The key idea of variational inference is to use a ‘variational distribution’, q(Z, θ), to approximate

the true posterior p(Z, θ|X) that we would ultimately like to obtain. We can measure the accuracy
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of this approximation using the Kullback-Leibler divergence (Kullback and Leibler 1951):

DKL(q(Z, θ) ‖ p(Z, θ|X)) =

∫
Z

∫
θ
q(Z, θ) ln

(
q(Z, θ)

p(Z, θ|X)

)
dθdZ. (2.2)

This is a measure of how much one probability distribution varies from another, though it is worth

noting that it is not a ‘distance’ between distributions, as KL divergence is not symmetric; i.e.

DKL(p ‖ q) 6= DKL(q ‖ p). Ideally the variational distribution will be identical to the posterior, in

which caseDKL(q(Z, θ) ‖ p(Z, θ|X)) = 0, but otherwise the divergence is always greater than zero.

This would suggest that our goal is to minimise the KL divergence, but we cannot do this directly,

as we would need to know the posterior. Fortunately, we can manipulate the KL divergence into a

more cooperative form:

DKL(q(Z, θ) ‖ p(Z, θ|X)) =

∫
Z

∫
θ
q(Z, θ)

(
ln q(Z, θ)− ln

(
p(Z, θ,X)

p(X)

))
dθdZ

=

∫
Z

∫
θ

(
−q(Z, θ) ln

(
p(X,Z, θ)

q(Z, θ)

)
+ q(Z, θ) ln p(X)

)
dθdZ

= −L[q] + ln p(X).

(2.3)

We have related the KL divergence to the log-evidence via a difference term, L, which we write

above as a functional of the variational distribution q, but which can also be written as a function of

unobserved variables, L(Z, θ). We call this term the evidence lower bound (ELBO), as it is a lower

bound on the log-evidence, a result we prove below:

ln p(X) = ln

(∫
Z

∫
θ
p(X,Z, θ)dθdZ

)
= ln

(∫
Z

∫
θ

p(X,Z, θ)

q(Z, θ)
q(Z, θ)dθdZ

)
≥
∫
Z

∫
θ
q(Z, θ) ln

(
p(X,Z, θ)

q(Z, θ)

)
dθdZ

= L[q].

(2.4)

We make use of Jensen’s inequality, ln(Eq[.]) ≥ Eq[ln(.)], since ln is a concave function.

Now that we have shown that the log-evidence can be decomposed as the sum of the ELBO

and KL divergence, we can use the fact that the log-evidence itself is independent of q to conclude

the following: minimising the KL divergence between the variational and posterior distributions
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is equivalent to maximising the ELBO. This is significant, as it means that, requiring knowledge

only of the full joint distribution p(X,Z, θ), we can frame variational inference as an optimisation

problem. By maximising the ELBO with respect to the variational distribution, we simultaneously

obtain approximations of both the log-evidence and the posterior, the two quantities that we are

chiefly concerned with finding in Bayesian inference.

This leaves the question of how to choose the variational distribution, which must be flexible

enough to approximate the unknown posterior. Optimising over free form q is difficult, and so an

effective approach is to choose a distributional family with a set of variational parameters φ, yield-

ing qφ = q(Z, θ|φ). Thus the ELBO becomes a function of φ and approximate inference simplifies

to the following maximisation problem:

arg max
φ
L(φ). (2.5)

We are now in a position to introduce two algorithms used in variational inference to perform this

optimisation.

2.3 Coordinate ascent variational inference

Coordinate ascent variational inference (CAVI; Bishop 2006) is a VI algorithm that uses an iterative

update scheme over variational parameters, similar to Gibbs sampling (S. Geman and D. Geman

1984). Consider our joint distribution p(X,Z, θ) of vectors of observed and local and global unob-

served variables, and variational distribution q(Z, θ) (we omit the φ conditioning for now; variational

parameters will appear during derivation). Making only the assumption that local and global vari-

ables are independent and we can factorise between them, so q(Z, θ) = q(Z)q(θ), we manipulate

the ELBO as to determine the optimal form of q(Z):

L[q] =

∫
Z

∫
θ
q(Z)q(θ)(ln p(X,Z, θ)− ln q(Z)− ln q(θ))dθdZ

=

∫
Z

(
q(Z)

{∫
θ
q(θ) ln p(X,Z, θ)dθ

}
− q(Z) ln q(Z)

)
dZ +

∫
θ
q(θ) ln q(θ)dθ

=

∫
Z

(q(Z) ln p̃(X,Z)− q(Z) ln q(Z)) dZ + c

= −DKL(q(Z) ‖ p̃(X,Z)) + c,

(2.6)

5



where ln p̃(X,Z) = Eq(θ)[ln p(X,Z, θ)] and c is a constant. We can see that maximising the ELBO

is equivalent to minimising KL divergence between p̃ and q(Z). This minimum is achieved by a

divergence of zero, which occurs when p̃ = q(Z). We can therefore derive the optimal form of q(Z)

(denoted by ∗) as

q∗(Z) = Eq(θ)[ln p(X,Z, θ)]. (2.7)

By the same approach, the optimal form of q∗(θ) is

q∗(θ) = Eq(Z)[ln p(X,Z, θ)]. (2.8)

These are specific instances of the general CAVI update rule, which states that for any vector of

unobserved variables Z whose variational distribution factorises as q(Z) =
i∏
qi(Zi):

ln q∗j (Zj) = Ei 6=j [ln p(X,Z)] + c. (2.9)

This says that the optimal form of each variational factor is proportional to the expectation of

the log-joint distribution taken over all other parameters. The constant term is a normalisation

factor. As each q∗ is approximating a posterior update, we can often guarantee the form of the

approximation with sensible choice of conjugate priors, which will usually allow the constant term

to be generated automatically.

Deriving the distributional form of each q∗j (Zj) allows us to find update equations for the varia-

tional parameters φ. CAVI is then simply a matter of updating each variational parameter iteratively

until convergence is reached, i.e. when the ELBO reaches a chosen threshold. It is worth noting

that the ELBO is generally nonconvex and therefore CAVI will only guarantee convergence to a lo-

cal maximum, though this is often suitable or can be addressed by using multiple initialisations. In

some cases, the optimal solution will be multimodal and one of these local optima is equal to the

global optimum; the variational mixture of Gaussians is one such example (due to label switching).

We derive the CAVI algorithm for a GMM clustering problem in Section 3.2.
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2.4 Gradient descent

Gradient descent is an iterative optimisation algorithm in which a local minimum of a cost function

is found by taking steps down the gradient of the function. In VI we are trying to maximise the

ELBO with respect to variational parameters φ, and can do so with the following update equation:

φt+1 = φt + ρt∇φtL. (2.10)

Note that, as a maximisation problem, this is technically gradient ascent, but we use the term gra-

dient descent by convention. In some cases the gradient can be computed analytically; we derive

gradients for the variational mixture of Gaussians in Section 3.3, and demonstrate the relation-

ship between CAVI and gradient descent. In most cases though, the gradient is either intractable

or computationally impractical to obtain due to the size of the dataset used. In these cases we

use stochastic gradient descent (SGD; Robbins and Monro 1951). Stochastic gradient descent

relies on finding noisy but unbiased estimates of the gradient during each iteration, and prov-

ably converges to a (local, if nonconvex) minimum when using an appropriate step size schedule

Spall 2003. We look at two applications of SGD to VI in this report, both of which are sampling

approaches based on Monte Carlo integration:

〈f〉 =
1

L

L∑
l=1

f(x̂l) ≈ Ep(x)[f(x)] =

∫
f(x)p(x)dx (2.11)

where x̂l ∼ p(x). The first uses mini-batch estimates of the dataset X and is detailed in Section

4. The second uses samples of global variables θ and is based on general gradient estimation

methods which we detail in Section 5. Note that we use 〈.〉 notation throughout this report to

denote estimates of expectations obtained via Monte Carlo methods.

3 Variational Gaussian Mixture Model

We motivate our exploration of variational inference with the example of a fixed-covariance multi-

variate Bayesian Gaussian mixture model (GMM; Ghahramani, Beal, et al. 1999) point clustering

problem.
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Clustering is the automatic grouping of datapoints by similarity, and is a foundational unsu-

pervised learning problem of data analysis with endless applications. Examples include within

finance, in the identification of market sectors (Arnott 1980); the distinguishing of features in im-

age and natural language processing (Di Marco and Navigli 2013; Filipovych et al. 2011), and

in recommender systems for grouping users with similar interests (Karlgren 1994). GMM fitting is

especially powerful in clustering as it produces a generative model, and variational methods allow

for fast, efficient Bayesian inference of such models. We begin by defining the full joint and varia-

tional distributional families parameterised by φ, and then use Equation 2.9 to derive the optimal

variational distributions and CAVI update equations for φ. We then consider the gradient descent

algorithm and derive gradients of the ELBO with respect to φ.

A GMM is a linear superposition of weighted Gaussians:

p(xn|θ) =

K∑
k=1

πkN (xn|µk,Σk). (3.1)

We define a D-dimensional dataset X = {x1, x2, ...xN} with corresponding latent variables Z =

{z1, z2, ...zN}, where each zn is a one-hot vector of length K indicating which of K mixture com-

ponents generated point xn. The mixture model is parameterised by θ = {πk, µk,Σk}Kk=1, where

πk denotes mixture weight, µk denotes Gaussian mean and Σk denotes covariance of mixture

component k.

For a GMM, CAVI updates are similar to the Expectation-Maximisation algorithm (Dempster et

al. 1977; Neal and Hinton 1998). Broadly, each iteration consists of:

1. An ‘expectation’ step, where predictions for the latent variables Z (i.e. point assignment to

mixture components) are made based on current model parameter estimates.

2. A ‘maximisation’ step, where model parameters are updated according to update equations,

one at a time, each update guaranteeing an increase in the ELBO.

These two steps are repeated until convergence. In this section we derive the CAVI algorithm

and update equations for a Bayesian GMM with fixed covariances Σk = Σ. We derive the joint and

variational distributional forms, as well as the ELBO gradients with respect to variational parameters

to demonstrate the link between gradients and CAVI. We will use this GMM and the results of this
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section throughout the report as much of the theory and derivations are closely linked to stochastic

approaches.

3.1 The joint distribution

The full joint distribution of p is as follows, dependencies given by the graphical model in Figure

3.1:

p(X,Z, θ) = p(X,Z, π, µ,Σ) = p(X|Z, µ,Σ)p(Z|π)p(π)p(µ). (3.2)

Let us consider each term. The first, the model likelihood, is simply a product of multivariate

N

Figure 3.1: Graphical model showing the relationships between variables in a GMM. The shaded
node indicates that xn is observed.

Gaussians, one for each datapoint (as znk is a one-hot vector):

p(X|Z, µ,Σ) =

N∏
n=1

K∏
k=1

N (xn|µk,Σ)znk . (3.3)

For a single point and its known cluster assignment znk,

p(xn|znk = 1, µ,Σ) = N (xn|µk,Σ). (3.4)

The conditional distribution of Z is a multinomial distribution over the mixture weights, where∑K
k=1 πk = 1:

p(Z|π) =

N∏
n=1

K∏
k=1

πznkk p(znk = 1) = πk. (3.5)
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Next we consider the prior distributions on the model parameters p(π) and p(µ), using conjugate

priors for the two likelihoods p(X|Z, µ) and p(Z|π). Using conjugate priors guarantees the distribu-

tional form of the posteriors and makes derivations much simpler. For given znk, the likelihood for

µ is a multivariate Gaussian with known covariance (Equation 3.4), for which the conjugate prior

is also Gaussian, hence we define the prior over µ as

p(µk) = N (µk|m0, C0), (3.6)

where means µk are independent of one another, and the prior factorises into p(µ) =
∏K
k=1 p(µk).

The likelihood for π, Equation 3.5, is a multinomial, for which the conjugate prior is a Dirichlet

distribution. Hence we define the prior over π as

p(π) = Dir(π|α0). (3.7)

It is worth briefly looking at the Dirichlet distribution and the significance of its parameters.

3.1.1 Dirichlet distribution

The form of the Dirichlet distribution is as follows:

Dir(π|α) = C(α)
K∏
k=1

παk−1k , (3.8)

where

C(α) =
Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)

, (3.9)

for Gamma function Γ(.). This is a multivariate probability distribution with a set of K concentration

parameters α = [α1, α2, ..., αK ]T . For weights in a mixture model, the concentration parameter

provides two intuitive pieces of information: the relative significance of each component, and

their sparsity. For example, uniform αk = α0 means we have no preference between mixture

components; Eα[πk] = αk/
∑K

j=1 αj = 1/K. If α0 is large, sampled πk will be reasonably similar

and tend to 1/K as α0 → ∞. If α0 is small, p(π) favours a sparse mixture with one (random) πk

close to one and all other πj 6=k → 0.
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This is a significant advantage of the posterior inference approach to GMM clustering, as we

need not guess the number of clusters. We can simply choose a reasonably large K and the

model will eliminate unnecessary components automatically, by driving those values of αk to zero.

3.2 The variational distribution

Next, we consider the form of q(Z, π, µ), our variational approximation to the posterior for the GMM.

We make only one assumption: that we can factorise between the latent variables and the model

parameters, known as the mean-field approximation:

p(Z, π, µ|X) ≈ q(Z, π, µ) = q(Z)q(π, µ). (3.10)

Now we can derive the optimal distributions q∗(Z) and q∗(π, µ) using Equation 2.9.

Let us first consider the optimal variational distribution of local variables q∗(Z). We decompose

the log-joint, absorbing terms that are not dependent on Z into a constant c, then substitute in

known distributions:

ln q∗(Z) = Eµ[ln p(X|Z, µ)] + Eπ[ln p(Z|π)] + c

= −1

2

N∑
n=1

K∑
k=1

znkEµk [(xn − µk)TΣ−1(xn − µk)] +
N∑
n=1

K∑
k=1

znkEπk [lnπk] + c

=

N∑
n=1

K∑
k=1

znkρnk + c,

(3.11)

where

ρnk = −1

2
Eµk [(xn − µk)TΣ−1(xn − µk)] + Eπk [lnπk]. (3.12)

Exponentiating both sides, and normalising,

q∗(Z) ∝
N∏
n=1

K∏
k=1

ρznknk

q∗(Z) =
N∏
n=1

K∏
k=1

rznknk ,

(3.13)

where rnk = ρnk/
∑K

j=1 ρnj . So the variational parameter of Z element znk is rnk, the responsibility

11



borne by the kth mixture component for datapoint xn. We can see that q∗(Z) is a multinomial

distribution, the same form as the mixing coefficient prior p(π).

At this point it is sensible to derive three useful statistics of the responsibilities:

Nk =

N∑
n=1

rnk (3.14)

x̄k =
1

Nk

N∑
n=1

rnkxn (3.15)

Sk =
1

Nk

N∑
n=1

rnk(xn − x̄k)T (xn − x̄k). (3.16)

These are analogous to the statistics of a dataset of size N with mean x̄ and covariance S, with

each point weighted by the responsibility of mixture component k.

Next we consider the optimal variational family of global variables, q∗(π, µ). Decomposing the

log-joint, we see that q∗(π, µ) can be split into terms only involving π and those only involving µ,

so we can factorise a step further:

ln q∗(π, µ) = EZ [ln p(X|Z, µ) + ln p(µ)] + EZ [ln p(Z|π) + ln p(π)] + c

= ln q∗(π) + ln q∗(µ).

(3.17)

Note that this is not an assumption but comes from our joint distribution. We derive the optimal

variational family of q(π) using a similar procedure to q(Z):

ln q∗(π) = EZ [ln p(Z|π) + ln p(π)] + c

=

N∑
n=1

K∑
k=1

EZ [znk] lnπk + (α0 − 1)

K∑
k=1

lnπk + c

=
K∑
k=1

(
N∑
n=1

rnk

)
lnπk + (α0 − 1)

K∑
k=1

lnπk + c

= (Nk + α0 − 1)

K∑
k=1

lnπk + c

q∗(π|α) = c
K∏
k=1

πNk+α0−1
k .

(3.18)

This is equal to the form of Equation 3.8 when c = C(α) (which it must be to normalise the

12



distribution), and thus we find that q∗(π|α) = Dir(π|α) where αk = Nk + α0. As expected, our

approximate posterior for π is the same as the conjugate prior distribution we have chosen.

Lastly, the optimal variational family of q(µ):

ln q∗(µ) = EZ [ln p(X|Z, µ) + ln p(µ)] + c

= −1

2

(
N∑
n=1

K∑
k=1

EZ [znk](xn − µk)TΣ−1(xn − µk) +
K∑

(µk −m0)
TC−10 (µk −m0)

)
+ c,

ln q∗(µk) = −1

2

(
N∑
n=1

rnk(xn − µk)TΣ−1(xn − µk) + (µk −m0)
TC−10 (µk −m0)

)
+ c.

(3.19)

The log distribution is a sum over K and thus µ factorises into individual µk, as p(µ) does. By

conjugacy, q∗(µk) will be a Gaussian distribution, which we parameterise by mean and covariance

mk, Ck:

q∗(µk) = N (µk|mk, Ck). (3.20)

Ignoring all terms outside the Gaussian exponent for now, we can use the following expression

for the product of Gaussian densities (Petersen, Pedersen, et al. 2008) to obtain the product of

N + 1 Gaussians:

N (m1,Σ1) · N (m2,Σ2) ∝ N (mc,Σc),

mc = (Σ−11 + Σ−12 )−1(Σ−11 m1 + Σ−12 m2), Σc = (Σ−11 + Σ−12 )−1,

(3.21)

and obtain

mk =

(
N∑
n=1

rnkΣ
−1 + C−10

)−1( N∑
n=1

Σ−1rnkxn + C−10 m0

)

=
(
NkΣ

−1 + C−10

)−1 (
NkΣ

−1x̄k + C−10 m0

)
,

Ck =
(
NkΣ

−1 + C−10

)−1
.

(3.22)

We have now derived the forms of the factorised variational distribution and the update equations

for our responsibilities rnk and variational parameters φ = {α,m,C}. Our collected CAVI updates

13



are:

rnk =
ρnk∑K
j=1 ρnj

, (3.23)

αk = α0 +Nk, (3.24)

mk =
(
NkΣ

−1 + C−10

)−1 (
NkΣ

−1x̄k + C−10 m0

)
, (3.25)

Ck =
(
NkΣ

−1 + C−10

)−1
. (3.26)

We summarise CAVI in Algorithm 1; it is extremely powerful, often nearing convergence in only

a few iterations; see Figure 3.2.
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Figure 3.2: Plotting a Gaussian mixture model using expected values of π, µ after n iterations on
a synthetic dataset. More information and experiments are in Section 6

3.3 ELBO gradients

In order to perform gradient descent updates, we must be able to calculate the gradient of the ELBO

with respect to our variational parameters. As r, the variational parameter for the local variables

Z, is discrete, we maintain the ‘expectation’ style step for its calculation derived in Section 3.2

rather than using gradient descent steps (this method is also used in the stochastic variational

inference algorithm of Hoffman et al. 2013, see Section 4). To derive the gradients of the ELBO

with respect to α,m,C, the variational parameters of global variables π, µ, we begin with the full
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Algorithm 1: Coordinate ascent variational inference for a fixed covariance GMM

Input: Data X, number of components K, priors α0,m0, C0, fixed Gaussian covariance Σ,
step size schedule ρ(t)

Output: Variational distributions q(zn|rn), q(π|α), q(µk|mk, Ck)
Initialise: t = 0, variational parameters r = r1:N,1:K , α = α1:K ,m = m1:K , C = C1:K

while the ELBO has not converged do
for n ∈ {1, ..., N}, k ∈ {1, ...,K} do

Set ρnk ← −1
2Eµk [(xn − µk)TΣ−1(xn − µk)] + Eπk [lnπk];

end
for n ∈ {1, ..., N}, k ∈ {1, ...,K} do

Set rnk ← ρnk/
∑K

j=1 ρnj
end
for k ∈ {1, ...,K} do

Set αk ← α0 +Nk;
Set mk ←

(
NkΣ

−1 + C−10

)−1 (
NkΣ

−1x̄k + C−10 m0

)
;

Set Ck ←
(
NkΣ

−1 + C−10

)−1;
end
Compute the ELBO(α,m,C, r) using Equation 3.27;
t← t+ 1 ;

end

ELBO expression below:

L[q] =

∫
Z

∫
µ

∫
π
q(Z, π, µ) ln

(
p(X,Z, π, µ)

q(Z, π, µ)

)
dπdµdZ

=E[ln p(X,Z, π, µ)]− E[ln q(Z, π, µ)]

=E[ln p(X|Z, µ)] + E[ln p(Z|π)] + E[ln p(π)] + E[ln p(µ)]

− E[ln q(Z)]− E[ln q(π)]− E[ln q(µ)].

(3.27)
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Note that we omit subscripts, but each expectation is taken over Z, π, µ. Considering each com-

ponent:

EZ,µ[ln p(X|Z, µ)] = −1

2

N∑
n=1

K∑
k=1

EZ [znk]
(
Eµk [(xn − µk)TΣ−1(xn − µk)] +D ln(2π) + ln |Σ|

)
,

(3.28)

EZ,π[ln p(Z|π)] =
N∑
n=1

K∑
k=1

EZ [znk]Eπk [lnπk], (3.29)

Eπ[ln p(π)] = lnC(α0) + (α0 − 1)
K∑
k=1

Eπk [lnπk], (3.30)

Eµ[ln p(µ)] = −1

2

K∑
k=1

(
Eµk [(µk −m0)

TC−10 (µk −m0)] +D ln(2π) + ln |C0|
)
, (3.31)

EZ [ln q(Z)] =
N∑
n=1

K∑
k=1

EZ [znk] ln rnk, (3.32)

Eπ[ln q(π)] = lnC(α) +

K∑
k=1

(αk − 1)Eπk [lnπk], (3.33)

Eµ[ln q(µ)] = −1

2

K∑
k=1

(
Eµk [(µk −mk)

TC−1k (µk −mk)] +D ln(2π) + ln |Ck|
)
. (3.34)

We can use some standard properties of the categorical (a single trial multinomial), Dirichlet and

Gaussian distributions, denoting entropy Eµ[ln q(µ)] by H and α̂ =
∑K

k=1 αk:

znk ∼ Mult(1, rnk), E[znk] = rnk; (3.35)

πk ∼ Dir(α), E[lnπk] = ψ(αk)− ψ (α̂) ; (3.36)

µk ∼ N (mk, Ck), H[q(µk)] =
D

2
ln(2πe) +

1

2
ln |Ck|; (3.37)

where ψ is the digamma function. We can use the standard evaluation of the expectations in

Equations 3.28 and 3.31 (Petersen, Pedersen, et al. 2008):

Eµk [(µk − xn)TΣ−1(µk − xn)] = (mk − xn)TΣ−1(mk − xn) + Tr(Σ−1Ck), (3.38)

Eµk [(µk −m0)
TC−10 (µk −m0)] = (mk −m0)

TC−10 (mk −m0) + Tr(C−10 Ck). (3.39)

It is sensible to further evaluate Equation 3.28, focusing only on terms in mk and absorbing all
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others into a constant, and using the fact that xTAx = Tr(AxxT ) and Equations 3.14, 3.15, and

3.16:

N∑
n=1

rnk(mk − xn)TΣ−1(mk − xn)

=

N∑
n=1

rnk
(
(mk − x̄k − xn + x̄k)

TΣ−1(mk − x̄k − xn + x̄k)
)

=

N∑
n=1

rnk
(
(mk − x̄k)TΣ−1(mk − x̄k) + (x̄k − xn)TΣ−1(x̄k − xn)

+ (mk − x̄k)TΣ−1(x̄k − xn) + (x̄k − xn)TΣ−1(mk − x̄k)
)

= Nk(mk − x̄k)TΣ−1(mk − x̄k)

+ Tr
(
Σ−1

(
Sk(mk − x̄k)(Nkx̄k −Nkx̄k)

T + (Nkx̄k −Nkx̄k)(mk − x̄k)T
))

= Nk(mk − x̄k)TΣ−1(mk − x̄k) + Tr
(
Σ−1Sk

)
.

(3.40)

Finally we can calculate gradients with respect to α,m,C:

∇αkL = ∇αk (EZ,π[ln p(Z|π)] + Eπ[ln p(π)]]− Eπ[ln q(π)])

=

(
N∑
n=1

rnk + (α0 − 1)− (αk − 1)

)
∇αkEπk [lnπk]− Eπk [lnπk]−∇αk lnC(α)

= (Nk + α0 − αk)(ψ′(αk)− ψ′(α̂))− (ψ(αk)− ψ(α̂))− (ψ(α̂)− ψ(αk))

= (Nk + α0 − αk)(ψ′(αk)− ψ′(α̂)), (3.41)

∇mkL = ∇mk (EZ,µk [ln p(X|Z, µk)] + Eµk [ln p(µk)])

= ∇mk

(
−1

2

N∑
n=1

rnk(mk − xn)TΣ−1(mk − xn)− 1

2
(mk −m0)

TC−10 (mk −m0)

)

= −NkΣ
−1(mk − x̄k)− C−10 (mk −m0), (3.42)

∇CkL = ∇Ck (EZ,µk [ln p(X|Z, µk)] + Eµk [ln p(µk)] + Eµk [ln q(µk)])

= ∇Ck

(
−1

2

N∑
n=1

rnkTr(Σ−1Ck)−
1

2
Tr(C−10 Ck) +

1

2
ln |Ck|

)

=
1

2

(
C−1k −NkΣ

−1 − C−10

)
. (3.43)

It is evident from these three gradients that the CAVI update equations (3.24, 3.25, 3.26) set

17



the gradient of the ELBO with respect to each variational parameter to zero, effectively making

them perfect gradient descent ‘leaps’ to the maximum ELBO for each variational parameter with all

others fixed. It should be stressed then that for the GMM a GD algorithm is an inferior version of

CAVI and we would never use it in practice; we have derived it here for two reasons. Firstly, the

stochastic variational algorithms for the GMM introduced in Section 4, based on mini-batch SGD,

build on the GD algorithm and the derived gradients. Secondly, because while true GD is rarely

used in practice, SGD very commonly is, and we are interested in the comparison of true gradients

and noisy gradient estimates in GD algorithms – SGD is effectively trying to approximate true GD

as closely as possible while reducing computation. We investigate this in Section 6.

Algorithm 2: Gradient descent variational inference for a fixed covariance GMM

Input: Data X, number of components K, priors α0,m0, C0, fixed Gaussian covariance Σ,
step size schedule ρ(t)

Output: Variational distributions q(zn|rn), q(π|α), q(µk|mk, Ck)
Initialise: t = 0, variational parameters r = r1:N,1:K , α = α1:K ,m = m1:K , C = C1:K

while the ELBO has not converged do
Calculate matrix of responsibilities r following procedure of Algorithm 1;
for k ∈ {1, ...,K} do

Set αk ← αk + ρ(t)∇αkL using Equation 3.41;
Set mk ← mk + ρ(t)∇mkL using Equation 3.42;
Set Ck ← Ck + ρ(t)∇CkL using Equation 3.43;

end
Compute the ELBO(α,m,C, r) using Equation 3.27;
t← t+ 1 ;

end

4 Stochastic Variational Inference

In this section, we address issues with the CAVI and GD algorithms we have already introduced,

based on the stochastic variational inference (SVI) approach of Hoffman et al. 2013. Firstly, both

CAVI and GD rely on calculating an N × K matrix of responsibilities in every iteration, a compu-

tationally expensive procedure, especially when many real-world applications use huge datasets.

Secondly, we have already shown that the GD algorithm is inferior to CAVI; we can further show

that gradients in the traditional Euclidean sense may be inappropriate for many VI problems, and

suggest an alternative.
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4.1 Mini-batch stochastic gradient descent

We have previously considered two methods of variational inference, CAVI and gradient descent.

A downside of both methods is that they require analysing every point in the dataset for a single it-

eration. For large datasets, this is prohibitively computationally expensive, and especially wasteful

considering that an initial update is made over the entire dataset using a completely uninforma-

tive random initialisation. A reasonable assumption would be that a random subset of the large

dataset S ⊂ X, or even a single datapoint, would be sufficiently informative to generate a noisy but

unbiased estimate of the gradient and allow SGD steps to be taken. We derive these estimators

below for our GMM problem, and in Section 4.2.3 apply this same idea to an alternative gradient

formulation.

4.1.1 Stochastic gradient estimates of the ELBO for the GMM

Recall that the unobserved variables of our GMM problem are both global model parameters

π, µ and local latent variables Z. From Equation 3.23 we see that updating the responsibilities,

{rnk}Kk=1, corresponding to local variable zn relies only on the global variables π, µ, and on the nth

datapoint xn. Therefore, stochastic updates for each zn are identical to their batch form, and we

reduce computation by simply updating the responsibilities for only S < N sample points.

To derive mini-batch gradient estimates of the ELBO with respect to α,m,C, we need Monte

Carlo estimators of the gradients given by Equations 3.41, 3.42 and 3.43, all of which are sum-

mations over N via Nk and x̄k. We can derive these estimators with a re-imagining of our GD

algorithm in which the full dataset consists of a single sample x̂n repeated N times. This produces

responsibility-weighted statistics Nk = Nrnk, x̄k = x̂n, Sk = 0, with which we can apply the usual

gradient update steps. This method yields gradient estimates from a single sample per iteration;

to improve results we can average single-sample estimates over randomly sampled mini-batches

of size S in each iteration. With respect to variational parameters α,m,C, the mini-batch gradient
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estimates of the ELBO are:

〈∇αkL〉 =
1

S

S∑
n=1

(Nrnk + α0 − αk)(ψ′(αk)− ψ′(α̂)), (4.1)

〈∇mkL〉 =
1

S

S∑
n=1

−NrnkΣ−1(mk − x̂n)− C−10 (mk −m0), (4.2)

〈∇CkL〉 =
1

S

S∑
n=1

1

2

(
C−1k −NrnkΣ

−1 − C−10

)
. (4.3)

We can use these estimators to perform stochastic gradient descent updates as detailed in Algo-

rithm 3.

Algorithm 3: Stochastic gradient descent variational inference for a fixed covariance GMM

Input: Data X, number of components K, priors α0,m0, C0, fixed Gaussian covariance Σ,
step size schedule ρ(t)

Output: Variational distributions q(zn|rn), q(π|α), q(µk|mk, Ck)
Initialise: t = 0, variational parameters r = r1:N,1:K , α = α1:K ,m = m1:K , C = C1:K

while the ELBO has not converged do
Sample X without replacement, generate subset Xs ⊂ X of length S < N ;
for n ∈ {1, ..., S}, k ∈ {1, ...,K} do

Set ρ̂nk ← −1
2Eµk [(xn − µk)TΣ−1(xn − µk)] + Eπk [lnπk];

end
for n ∈ {1, ..., S}, k ∈ {1, ...,K} do

Set r̂nk ← ρ̂nk/
∑K

j=1 ρ̂nj
end
for k ∈ {1, ...,K} do

Set αk ← αk + ρ(t)〈∇αkL〉 using Equation 4.1;
Set mk ← mk + ρ(t)〈∇mkL〉 using Equation 4.2;
Set Ck ← Ck + ρ(t)〈∇CkL〉 using Equation 4.3;

end
Compute the ELBO(α,m,C, r);
t← t+ 1 ;

end

4.2 Natural gradient descent

In traditional gradient descent, for a function L(w) parameters are updated by taking small

steps in a Euclidean D-dimensional parameter space w ∈ RD such that wt+1 = wt + dw, for

|dw|2 =
∑D

i=1 dw
2
i . For updating parameters of distributions, however, steps in Euclidean space

are not necessarily optimal, or even meaningful. Hoffman et al. 2013 uses as an example two
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pairs of univariate Gaussians, N (x1|0, 0.01),N (x1|0.1, 0.01),N (x2|0, 10000),N (x2|10, 10000). In

the first pair the Euclidean distance between the means is only 0.1, but the two distributions barely

overlap. In the second pair the distributions overlap almost completely, yet the Euclidean dis-

tance between the means is one hundred times greater. Evidently, the Euclidean distance is not

the most appropriate measure of similarity; we should consider a metric that is better suited to

probability distributions. Euclidean space is a particular case of Riemannian parameter space, in

which |dw|2 =
∑

i,j gij(w)dwidwj , and the direction of steepest descent is equal to G(w)−1∇L(w),

where G is the matrix of elements gij . This direction is defined as the natural gradient ∇̃L(w)

(Amari 1998), and offers an alternative to traditional gradient descent for appropriate choice of G.

How should we choose G? As we are considering the similarity of variational distributions qφ(Z, θ)

with differing parameterisations φ, a sensible choice is the symmetrised KL divergence between

distributions, DKL(qφ ‖ qφ′) +DKL(qφ′ ‖ qφ), for which G is the Fisher information matrix of q:

G(φ) = Eφ[(∇φ ln qφ)(∇θ ln qφ)T ] (4.4)

In order to obtain the Fisher information matrix, we consider a reformulation of the GMM problem

using the exponential family of distributions.

4.2.1 The exponential family

The stochastic natural gradient approaches of Sato 2001 and Hoffman et al. 2013 are built on

standard behaviour of distributions within the exponential family. Probability distributions over x

with vector parameters θ in the exponential family take the form

p(x|θ) = h(x) exp(η(θ) · T (x)−A(θ)), (4.5)

with the following components:

• Base measure h(x): defines distributional family, along with T (x).

• Natural parameter η(θ): an alternative parameterisation of the distribution. The natural pa-

rameter space, for which p(x|θ) is finite, is always convex.
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• Sufficient statistic T (x): called thus because it is a statistic of obersved data that holds all

possible information about θ.

• Log-normaliser A(θ): ensures that p(x|θ) integrates to 1.

Consider the three key distributions in our GMM variational factorisation: the categorical q(zn|rn),

Gaussian q(µk|mk, Ck) and Dirichlet q(π|α). The exponential family components of each of these

distributions is given in Table 1:

Distribution θ η(θ) h(x) T (x) A(η)

Gaussian
[
µ
Σ

] [
Σ−1µ
−1

2Σ−1

]
(2π)−k/2

[
x
xxT

]
−1

4η
T
1 η
−1
2 η1 − 1

2 ln | − 2η2|

Dirchlet α α 1/
∏K
k=1 πk [lnπ1, ... lnπK ]T

∑k
i=1 ln Γ (ηi)− ln Γ

(∑k
i=1 ηi

)
Categorical rn ln rn 1 zn

{
znk = 1

zn\k = 0
0

Table 1: Exponential family components for distributions used in this report

4.2.2 Deriving natural gradients of the ELBO

Let us define the natural parameters for our GMM using mappings η:

γn = ηzn(rn), ν = ηπ(α), [λk1, λk2]
T = ηµk

(
[mk, Ck]

T
)
, (4.6)

noting that ν = α, but we define it uniquely to distinguish ν as a natural parameter. Using the

fact that the expectation of the sufficient statistic is the gradient of the log-normaliser E[T (x)] =

∇ηA(η), and Equation 2.9 for the CAVI optimal variational distribution, we can simultaneously

rewrite the ELBO as functions of our three natural parameters, while linking this formation to our

CAVI updates. Beginning with α, ν:

L(ν) = EZ,π,µ[ln p(X,Z, π, µ)− ln q(Z, π, µ)]

= Eπ[ln q∗(π|ν)]− Eπ[ln q(π|ν)] + c

= ν∗E[T (π)]−A(ν∗)− νE[T (π)] +A(ν) + c

= ∇νA(ν)(ν∗ − ν) +A(ν) + c,

(4.7)
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where ν = [ν1, ..., νK ]T and ν∗k = Nk + α0, the parameterisation of q∗(π) derived in Section 2.3

transformed by the natural parameter mapping η. We use the same method to rewrite ELBO as

functions of λk and γn:

L(λk) = ∇λkA(λk)(λ
∗
k − λk) +A(λk) + c, (4.8)

L(γn) = ∇γnA(γn)(γ∗n − γn) +A(γn) + c, (4.9)

where γ∗n = [γ∗n1, ...γ
∗
nK ]T = [ln r∗n1, ... ln r

∗
nK ]T , given by Equations 3.12 and 3.23, and λk =

[λk1, λk2]
T =

[
C−10 m0 +NkΣ

−1x̄k,−1
2

(
NkΣ

−1 + C−10

)]T . We can see that these formulations of

the ELBO are similar, suggesting a general result, which is that ∇ηL = ∇ηA(η)(η∗ − η) +A(η) + c,

and from which we can differentiate to obtain another general result:

∇ηL = ∇2
ηA(η)(η∗ − η). (4.10)

This states that for each variational natural parameter, the corresponding gradient of the ELBO is

the difference between the current and CAVI-determined parameters, pre-multiplied by the Hessian

of the log-normaliser.

Let us return to the Fisher information matrix. Using the exponential family representation of

qη, parameterised by η(φ):

G(η) = Eη[(∇η ln qη)(∇η ln qη)
T ]

= Eη
[
(T (·)− E[T (·)])(T (·)− E[T (·)])T

]
= Cov(T (·), T (·))

= ∇2
ηA(η),

(4.11)

where we have used the fact that the variance of the sufficient statistic is equal to the Hessian of

the log-normaliser. We defined natural gradient earlier as Euclidean gradient premultiplied by the

inverse of the Fisher information matrix, therefore the Hessian of the log-normaliser is canceled

out, and the natural gradient of the ELBO with respect to any variational natural parameter η is

∇̃ηL = η∗ − η. (4.12)
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Looking back to our CAVI updates, we obtain a truly significant result, namely that setting η = η∗

is equivalent to setting η ← η + ∇̃ηL, which is simply a natural gradient update of fixed step size

1, or a Euclidean gradient update step with step size ρt determined automatically by the Fisher

information in each iteration.

4.2.3 Stochastic natural gradient descent

By recasting CAVI as natural gradient descent, we can now utilise the mini-batch sampling intro-

duced earlier to reduce computation for a large dataset, and perform stochastic natural gradient

descent optimisation with noisy Monte Carlo estimates of the natural gradient:

〈∇̃νkL〉 =
1

S

S∑
n=1

(Nr̂nk + α0 − αk), (4.13)

〈∇̃λk1L〉 =
1

S

S∑
n=1

(
C−10 m0 +Nr̂nkΣ

−1x̂n − C−1k mk

)
, (4.14)

〈∇̃λk2L〉 =
1

S

S∑
n=1

−1

2

(
Nr̂nkΣ

−1 + C−10 − C
−1
k

)
. (4.15)

Note that the local responsibility updates remain the same as in CAVI, as we have just shown

them to be equivalent in the batch case, and they are independent of each other – therefore when

mini-batching we simply update a subset of the responsibilities {r̂n}Sn=1 in the usual manner; see

Algorithm 4.

5 Gradient Estimators

In VI and many other problem domains, the ability to estimate accurate, low variance estimates

of function gradients is essential to gradient descent methods. We have so far only considered VI

algorithms with distributions within the exponential family, whose gradients (natural or Euclidean)

we can calculate analytically, or approximate with ‘analytic’ gradient estimators that utilise mini-

batching. In many real-world applications, this is not feasible, and we must rely on more general

gradient estimators with far less information about the distributions being studied.

In VI we are concerned with the gradient of the expectation of the ELBO, and so we focus on
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Algorithm 4: Stochastic natural gradient descent VI for a fixed covariance GMM

Input: Data X, number of components K, priors ν0, λ0, fixed Gaussian covariance Σ, step
size schedule ρ(t)

Output: Variational distributions q(zn|rn), q(π|ν), q(µk|λk)
Initialise: t = 0, variational parameters r = r1:N,1:K , ν = ν1:K , λ = λ1:K
while the ELBO has not converged do

Sample X without replacement, generate subset Xs ⊂ X of length S < N ;
Calculate matrix of responsibilities r following procedure of Algorithm 3;
for k ∈ {1, ...,K} do

Set νk ← νk + ρ(t)〈∇̃νkL〉 using Equation 4.13;
Set λk1 ← λk1 + ρ(t)〈∇̃λk1L〉 using Equation 4.14;
Set λk2 ← λk2 + ρ(t)〈∇̃λk2L〉, using Equation 4.15;

end
Compute the ELBO(α,m,C, r);
t← t+ 1 ;

end

problems of the form

∇θEpθ [f(x)] = ∇θ
∫
f(x)pθ(x)dx, (5.1)

for which we use the Monte Carlo integration to approximate expectations (see Section 7.2.1), and

denote f(x) and p(x) the cost and the measure respectively. Three broad classes of Monte Carlo

gradient estimators exist: score function, pathwise, and measure. The latter we do not consider

here, see Mohamed et al. 2020 for more information.

5.1 Score function estimator

The score function estimator (SFE), also known as the REINFORCE estimator (R. J. Williams

2004) is an extremely general and widely used gradient estimator that can be loosely considered

to be a differentiator of the measure pθ(x).

The SFE utilises the score function:

∇θ ln p(x|θ) =
∇θp(x|θ)
p(x|θ)

, (5.2)

which allows us to construct the following MC gradient estimator (Mohamed et al. 2020), provided
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we can both sample the measure and evaluate the gradient of its log:

∇θEpθ [f(x)] = Epθ [f(x)∇θ ln p(x|θ)] ≈ 1

L

L∑
l=1

f(x̂(l))∇θ ln p(x̂(l)|θ) = 〈∇θEpθ [f(x)]〉SFE, (5.3)

where x̂(l)∼pθ(x). In the case of VI we are interested in optimising the ELBO with respect to its

variational parameters φ:

∇φL = ∇φ
∫
Z

∫
θ
qφ(Z, θ)(ln p(X,Z, θ)− ln qφ(Z, θ))dθdZ, (5.4)

for which we can construct a SFE, using simple Monte Carlo integration to approximate the entropy

term H[qφ] = Eqφ [− ln qφ] – we should be able to do this to an abitrary degree of accuracy as long

as we can evaluate ln qφ.

Unfortunately, score estimators suffer from high variance in their gradient estimates. There

are a number of reasons for this (see Mohamed et al. 2020) but intuitively we can see that this

estimator uses no information from the cost and knows nothing about its gradient, essentially

treating it as a black box. Lacking knowledge about the elements of the cost function means that

we must incorporate uncertainty around them into the SFE, even though many of them may not

contribute to the gradient. The variance of the gradient estimate is given by E[(∇φ ln pθ(x)f(x))2]−

〈∇φL〉2, so we can see that, for example, if x =
∑D

d=1 xd, the size of the variance will scale with

these unseen parameters, O(D2).

In order to use practically, it is common to apply some form of variance reduction in conjunction

with the score function estimator, such as control variates. These replace the black-box cost

function of SFE with a substitute cost whose expectation is the same but whose gradient is lower,

by introducing a control variate which is correlated with the cost (Mohamed et al. 2020).

The SFE is useful across many areas as a black-box estimator that reduces the need for difficult

manual derivations, and has been applied successfully in VI (Paisley et al. 2012; Ranganath et al.

2014), but for our purposes another common type of estimator is more appropriate.
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5.2 Pathwise estimator

This estimator is less generalised than the SFE, but when applicable it is able to reduce variance

significantly by utilising the structure of the problem. This estimator relies on the reparameter-

isation trick (Kingma and Welling 2014, which allows us to substitute direct sampling from our

measure with samples from a simpler distribution, and transform these samples with a determin-

istic function, or ‘path’:

x̂ ∼ p(x|θ) ≡ x̂ = g(ε̂, x), ε̂ ∼ p(ε). (5.5)

With a known base distribution and transformation, we can recast our expectation Epθ [f(x)] =

Ep(ε)[f(gθ(ε))], and subsequently derive our Monte Carlo estimator:

〈∇φL〉PW =

L∑
l=1

∇φf
(
g
(
ε̂(l)|θ

))
, ε̂(l) ∼ p(ε). (5.6)

We can see this as effectively moving the dependence of the measure on θ into the cost, allow-

ing the derivative operator to move into the expectation. To apply this estimator we require a

path that is differentiable with the chain rule. How do we determine this path? Methods include

transformation using the inverse CDF, or for many standard distributions there are ‘one-liners’

(Devroye 1996) we can apply easily – for instance, for pθ(x) = N (x|µ,Σ) we can simply use

p(ε) = N (0, I), g(ε) = µ + Σ
1
2 ε (for square root defined by Cholesky decomposition). By directly

differentiating the cost function the variance of the gradient estimate can be reduced significantly:

only those elements of the cost which affect the gradient are taken into account, and our variance

bounds are even independent of dimensionality, unlike the SFE which suffers in high dimensions.

5.3 GMM gradient estimators of the ELBO

We are now in a position to derive score function and pathwise estimators for SGD optimisation

of our VI GMM clustering problem. Again, we note that the availability of analytic gradients means

you would not use these estimators for this problem in practice, but we wish to compare the

effectiveness of a variety of algorithms on a simple, shared problem (see Section 6).

Let us consider our local and global unobserved variables. For these estimators we cannot

rely on knowledge about the distributions of the unobserved variables, but we are able to draw
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samples from them. As a reminder the ELBO is
∑N

n=1

∫
q(zn, θ|φ) (ln p(xn, zn, θ)− ln q(zn, θ|φ)) dθ.

A general purpose Monte Carlo estimate of the ELBO using such samples is below:

〈L〉 =
1

L

N,L∑
n,l=1

ln p(xn, z
(l)
n , π

(l), µ(l))− ln qφ(z(l)n , π
(l), µ(l)), (5.7)

with samples drawn as follows:

z(l)n ∼ qφ(zn) = Mult(zn|1, rn), (5.8)

π(l) ∼ qφ(π) = Dir(π|α), (5.9)

µ
(l)
k ∼ qφ(µk) = N (µk|mk, Ck) . (5.10)

In some VI problems the latent variables are continuous, such as variational autoencoders

(VAEs; Kingma and Welling 2014) where they are sampled from a zero-mean Gaussian. In our

GMM problem the latent variables are discrete, and their variational parameters rnk are not suitable

for gradient descent updates. Therefore for simplicity, and the purposes of comparison, we use

Monte Carlo estimates and GD only for π, µ and their variational parameters α,m,C, retaining our

analytic ‘E step’, Equation 3.23, from Section 3.2. This is effectively taking the expectation over

Z before estimating the gradient, using E[znk] = rnk as usual. While we do not use this in our

experiments, we offer a suggested reparameterisation of discrete latent variables in Section 5.3.3

5.3.1 Score function estimator

Using the sampling distributions of Equations 5.9, 5.10:

〈∇φL〉SFE =
L∑
l=1

ln p(X,Z, π(l), µ(l))∇φ ln qφ(Z, π(l), µ(l)) +∇φH[qφ(Z, π, µ)]. (5.11)

Recall that we separate the entropy to ensure that the cost function has no dependence on φ.

In many applications of VI the entropy of the variational gradient can be calculated analytically

(Kingma and Welling 2014); for simplicity we assume this here, though we note that finding and

using MC gradient estimates of the entropy are not too challenging. The gradient terms for each
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variational parameter are:

∇αk ln q(π) = ∇αk

(
lnC(α) +

K∑
k=1

(αk − 1) lnπk

)

= ψ

(
K∑
k=1

αk

)
− ψ(αk) + αk lnπk, (5.12)

∇mk ln q(µk) = −1

2
∇mk

(
(µk −mk)

TC−1k (µk −mk) +D ln(2π) + ln |Ck|
)

= C−1k (mk − µk), (5.13)

∇Ck ln q(µk) = −1

2

(
(µk −mk)(µk −mk)

T + C−1k
)
. (5.14)

5.3.2 Pathwise estimator

We now consider a pathwise estimator approach to our variational GMM. Working from the au-

toencoding variational Bayes (AEVB) algorithm of Kingma and Welling 2014, we see that we must

consider sampling paths for our reparameterisations of variables, π = g(û), µk = h(ξ̂k). The AEVB

estimator, adapted for the variational GMM, is

〈∇φL〉PW =
1

L

L∑
l=1

∇φ
(
f(X,Z, g(ζ̂(l)), h(ξ̂(l))

)
, (5.15)

for cost f(X,Z, π, µ) = ln p(X,Z, π, µ)− ln qφ(Z, π, µ). To obtain the pathwise estimate we require

base sampling distributions and differentiable sampling paths for a Gaussian distribution and a

Dirichlet distribution. Starting with µk, we derive the sampling paths for differentiatting the cost

with respect to mk, C
1/2
k below, beginning with samples from the base distribution ξ̂k ∼ N (0, I).

Note that we use C
1/2
k rather than Ck, as it simplifies the differentiation, and ensures positive
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definiteness of the covariance matrix is preserved after a gradient descent step.

∇mkf = ∇µkf∇mkµk, (5.16)

∇
C

1/2
k

f = ∇µkf(∇
C

1/2
k

µk)
T , (5.17)

∇µkf = ∇µk (ln p(X|Z, µk) + ln p(µk)− ln q(µk))

= −
N∑
n=1

(
rnkΣ

−1(xn − µk)
)
− C−10 (µk −m0) + C−1k (µk −mk), (5.18)

∇mkµk = ∇mkh(ξ̂k) = ∇mk(mk + C
1/2
k ξ̂k) = 1, (5.19)

∇
C

1/2
k

µk = ∇
C

1/2
k

h(ξ̂k) = ∇Ck(mk + C
1/2
k ξ̂k) = ξ̂k. (5.20)

For the Dirichlet reparameterisation a number of methods have been developed, such as ap-

proximations with a Weibull distribution (Zhang et al. 2020) and a Gaussian softmax (Srivastava

and Sutton 2017), but such approximations can suffer in accuracy. We use the path suggested

in Figurnov et al. 2018: firstly samples ûk are drawn from a uniform distribution and transformed

into Gamma distribution samples ŷk using the inverse Gamma CDF (shape parameter αk, rate

parameter 1):

ŷk = F−1αk,1
(ûk), ûk ∼ U(0, 1). (5.21)

These can then be transformed into samples from the Dirichlet distribution:

π̂k =
ŷk∑K
k=1 ŷk

. (5.22)

Now we can assemble our derivative with respect to the cost using the chain rule:

∇αkf = ∇πkf∇αkπk = ∇πkf∇ŷkπk∇αkF
−1
αk,1

, (5.23)

∇πkf = ∇πk (Nk lnπk + lnπk + (αk − 1) lnπk) = (αk +Nk)/πk, (5.24)

∇ŷk π̂k =

∑K
j=1 ŷj 6=k

(
∑K

k=1 ŷk)
2
, (5.25)

∇αkF
−1
αk,1

=
1

ε

(
F−1αk+ε,1

(ûk)− F−1αk,1
(ûk)

)
. (5.26)

Following the work of Joo et al. 2019; Knowles 2015, we use a high accuracy numerical approx-
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imation of the inverse CDF using SciPy’s stats.gamma.ppf function (Virtanen et al. 2020), and

use the finite difference method to calculate its gradient.

5.3.3 Reparameterising discrete latent variables

As an aside, we note that it is possible to reparameterise the one-hot samples of zn from the

categorical distribution using a suitable approximation. Jang et al. 2017 make use of the Gumbel

trick to approximate discrete distributions, replacing the undifferentiable argmax with a softmax to

define the differentiable Gumbel-softmax distribution. The path for rnk is given below:

∇rnkf = ∇znkf∇rnkznk, (5.27)

∇rnkznk = ∇rnk

(
exp((ln rnk + ε̂k)/τ)∑K
k=1 exp((ln rnk + ε̂k)/τ)

)
, (5.28)

∇znkf = ∇znk
(
−1

2
znk(xn − µk)TΣ−1(xn − µk) + znk lnπk + znk ln rnk

)
= −1

2
(xn − µk)TΣ−1(xn − µk) + lnπk + ln rnk, (5.29)

where εk is a sample of the Gumbel distribution using the Gumbel trick ε̂k = − ln(− ln(ûk)), ûk ∼

U(0, 1) and τ is a temperature parameter. As τ → 0, draws from the Gumbel-softmax become

one-hot vectors, but there is a trade-off in gradient variance. This is an interesting area for future

research, and the author’s results rival traditional VAEs, but we do not consider it further here.

5.4 Alternative lower bounds

Although we focus on the ELBO in this report, there is a lot of research into alternative variational

lower bounds that reduce gradient variance, particularly in the case of VAEs. The best-known and

simplest of these is the importance weighted autoencoder (IWAE; Burda et al. 2016), which can

be used in many non-VAE VI applications, including the variational GMM. The idea is simple –
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beginning with a Monte Carlo estimator of the ELBO:

〈L(θ, φ)〉VAE =
1

L

L∑
l=1

ln
p
(
x, θ(l)

)
qφ(θ(l))

≤ ln p(x), (5.30)

〈L(θ, φ)〉IWAE = ln
1

K

K∑
k=1

p
(
x, θ(l)

)
qφ(θ(l))

≤ ln p(x), (5.31)

we swap the order of the log and the weighted summation, and by Jensen’s inequality can say

that 〈L〉VAE ≤ LIWAE(θ, φ). IWAE is therefore a tighter, and therefore superior, lower bound on the

evidence. Below we derive the gradient estimator using IWAE, using two applications of the score

function on lines two and three:

〈∇φL〉IWAE = ∇φ ln
1

L

L∑
l=1

p
(
x, θ(l)

)
qφ(θ(l))

=

∑L
l=1∇φp

(
x, θ(l)

)
/qφ(θ(l))∑L

l=1 p(x, θ
(l))/qφ(θ(l))

=
L∑
l=1

p
(
x, θ(l)

)
/qφ(θ(l))∑L

l=1 p(x, θ
(l))/qφ(θ(l))

∇φ ln
p
(
x, θ(l)

)
qφ(θ(l))

=
L∑
l=1

wl∇φ ln
p
(
x, θ(l)

)
qφ(θ(l))

.

(5.32)

We can understand this tighter bound intuitively by comparing with the Monte Carlo gradient es-

timate of the ELBO. For IWAE, rather than weighting each sample equally by number of samples

L, they are more appropriately weighted by their relative importance wl. Further work improves

on IWAE (Roeder et al. 2017), most notably doubly reparameterised gradient estimators (DREG;

Tucker et al. 2018), which addresses a hidden, high variance score-function term in the IWAE path-

wise gradient by performing another reparameterisation on it. Due to time and space constraints,

we do not consider these estimators further in this report, or in our experiments.

6 Experiments

In this section we compare some of the approaches to variational inference detailed in this report,

using the GMM clustering problem detailed in Section 3. We are primarily interested in comparing
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convergence rates, in both wall-clock time and number of iterations, between methods and with

varying sample sizes.

These experiments were all implemented in Python using NumPy and SciPy. No automatic

machine learning libraries such as Scikit-learn were used (Pedregosa et al. 2011), and all VI

algorithms were written from scratch. All code used in this project can be found at https://github.

com/BenGutteridge/4YP, as well as gif animations of the experimental runs in this section.

While the ELBO is the value of interest for the majority of this report, it is of little use as

a convergence diagnostic or comparitive performance metric. As noted by Yao et al. 2018,

comparing the ELBO between different methods is meaningless, and the value itself is unin-

tuitive. The authors propose their own diagnostics, but these are unnecessarily complicated

for our investigation. An alternative might be the (symmetrised) KL divergence, but this is re-

flected in the ELBO. We choose log-likelihood error as a simple and intuitive measure of error:

ln p(X|πtrue, µtrue)− ln p(X|E[π],E[µ]), comparing the ground truth GMM parameters with our best

approximations.

Our synthetic dataset consists of N = 700 points with 7 clusters; we start with K = 10 mix-

ture components and allow the algorithms to eliminate unnecessary components automatically by

driving mixture weights to zero.

6.1 Comparing VI approaches

The five key VI algorithms that were built and that are explored here are coordinate ascent vari-

ational inference (CAVI; equivalent to natural gradient descent), gradient descent (GD), stochastic

gradient descent (SGD), stochastic natural gradient descent (SNGD) and stochastic gradient de-

scent using the pathwise estimator (PW). An algorithm for SGD using the SFE was also written, but

as mentioned in Section 5, this method was found to be unsuitable, failing to converge due to the

N2 scaling of gradient estimate variance; hence we leave out the SFE here.

Figure 6.1 shows an illustrative set of runs over our five methods, both in wall-clock time and

iterations. As expected the pathwise estimator performs worst: it is a general method and the

only one that does not use an analytic evaluation of the expectation of the ELBO gradient; it must

evaluate over multiple samples to perform Monte Carlo integration, and uses the entire dataset.
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CAVI also evaluates over the entire dataset, but does not require multiple samples, so it is faster

in wall-clock time as well as being by far the most accurate approach and the fastest in terms of

iterations. Both SNGD and SGD are fast and accurate, though SGD requires more iterations.
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Figure 6.1: Log-likelihood error of all multiple VI approaches with illustrative runs. L, S are number
of samples and size of mini-batch, respectively

6.2 Step size schedules for GD

For simplicity our SGD and PW approaches use an identical GD step schedule, with heuristically

determined base step sizes for each variational parameter that decay exponentially: ρt = s ·

exp(−0.01t), where s is a scale parameter that we set to 1. The benefit of accurate gradients is

that we can use larger step sizes in GD schemes; we look at this in Figure 6.2 by varying s. We

find that the speed and accuracy increase for larger steps, though there is a risk of instability, as

seen in the case of s = 10, where performance is initially strong but begins to wander. The s = 20

case did not even initially converge, so it is not plotted.
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Figure 6.2: Log-likelihood error of GD runs with various numbers of scales s of GD schedule ρt =
s · exp(−0.01t)

6.3 Mini-batch sizes

In Figure 6.3 we compare the convergence rates of various mini-batch sizes for SGD. We can see

that while the large mini-batches do converge in fewer iterations, and ultimately have lower error,

smaller mini-batches can reach a similar level of accuracy in much less time. Unfortunately, it is

inconvenient to determine base step sizes and ideal mini-batch sizes in advance.
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Figure 6.3: Log-likelihood error of SGD runs with various sized mini-batches

Figure 6.4 shows similar results for SNGD, which are furstratingly poor compared with SGD,

likely due to the untuned step size. We show in Section 4 that CAVI, our most efficient VI algorithm,

is equivalent to natural gradient descent for step size 1, regardless of parameter. Thus we use
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Figure 6.4: Log-likelihood error of SNGD runs with various sized mini-batches

a base step size of 1 for all φ and decay exponentially, though this results in some large jumps,

particularly for smaller mini-batches.
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Figure 6.5: Comparing a single run each of SNGD and SGD, each using a mini-batch of 10 samples
per iteration

The main benefits of natural over traditional gradients are demonstrated in Figure 6.5. We can

see that the SNGD converges more accurately in fewer iterations, as we would expect since the

natural gradient is a more appropriate optimisation path for parameters of probability distributions

(see Section 4.2). Furthermore, each SNGD iteration is faster than an SGD iteration, as in the latter
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we effectively must compute the Fisher information matrix each time.

6.4 Number of Monte Carlo samples

In Figure 6.6 we compare PW runs over multiple sample sizes, and show that single sample is

generally sufficient for convergence, and optimal in terms of wall-clock time. When utilising the

IWAE estimator, results shown in Figure 6.7, results are similar, the single sample covering more

quickly as expected due to requiring fewer evaluations, but we see slightly faster initial convergence

using multiple samples. This is not as fast as we would like, but the distributions sampled in this

problem are quite simple – for more complex distributions, importance weighting will be more

impactful.
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Figure 6.6: Log-likelihood error of PW runs with various numbers of samples used per iteration
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Figure 6.7: Log-likelihood error of PW runs with IWAE and various numbers of samples
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7 Gaussian Processes and Bayesian Quadrature

In this section, we explore Gaussian processes (GPs) and their applications – GP regression,

Bayesian quadrature, and Bayesian optimisation – to help address the generic problem of vari-

ational inference. Unfortunately, time constraints limited the amount of experimentation that was

possible in this area, and some avenues of interest were found to be unworkable after investiga-

tion. We include these ‘dead ends’ to demonstrate the work put into investigation, literature review

and understanding of these topics, and pose suggested avenues for future research.

7.1 Gaussian processes

Intuitively, a GP is a distribution over functions. If we think of an unknown function f(x) as an

infinite-length vector of outputs for infinite inputs x ∈ R, then there is no reason we cannot imagine

f(x) as a ‘random function’ distributed by an infinite-dimensional distribution. A Gaussian process

can be thought of as an infinite-dimensional extension of the multivariate Gaussian distribution;

a collection of random variables over a continuous domain. The beauty of GPs is that any finite

number of these random variables are jointly Gaussian distributed. For example, a function evalu-

ation at a single point is distributed by a Gaussian: f(x1) ∼ N (µ, σ), a susbet of two evaluations

are distributed by a 2D Gaussian f(x1, x2) ∼ N (µ,Σ), and so on. The ‘marginalisation property’

means that distributional parameters between larger and smaller sets of variables are consistent:

Σ11 = σ, for instance (C. E. Rasmussen and C. K. I. Williams 2006).

A GP is defined entirely by its mean and covariance functions:

f(x) ∼ GP(m(x), k(x, x′)), (7.1)

m(x) = E[f(x)], (7.2)

k(x, x′) = Cov(f(x), f(x′)) = E[(f(x)−m(x))(f(x′)−m(x′)]. (7.3)

We often choose m(x) = 0 and allow the GP to be defined entirely by its covariance, or kernel,

function. A typical choice is the squared exponential or radial basis function kernel:

kSE(x, x′) = σ2s exp

(
−(x− x′)2

2`2

)
. (7.4)
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This essentially acts as a smoothing function, ensuring neighbouring points are closely correlated,

and is defined by two hyperparameters: the lengthscale ` which essentially defines the smooth-

ness, or the breadth of the region of correlation between neighbouring points, and the output

variance σs, a scale factor common to all kernel functions.

7.1.1 Gaussian process regression

The flexibility of GPs and their ability to represent uncertainty makes them ideal function approxi-

mators. By beginning with a GP prior and performing posterior inference over a number of function

evaluations, we can approximate the unknown (but evaluatable) function. This is extremely useful

in situations where evaluating the unknown function is expensive. We give a brief overview of

training a Gaussian process on function evaluations below.

We can draw a sample from a GP by denoting a set of prediction points and sampling from the

GP at those points. We denote a function draw from the GP prior using prediction points X∗ with

f∗:

f∗ ∼ N (0,K(X∗, X∗)). (7.5)

Here we have assumed a zero mean function, as in Figure 7.1. Before training, these function

draws are uninformative. Now let us consider the function draws conditioned on a set of true

function evaluations X, f : this is our training data. For noise free evaluations, we can express our

posterior GP as (C. E. Rasmussen and C. K. I. Williams 2006):

f∗ | X∗, X, f ∼ N
(
f̄∗,Cov(f∗)

)
, (7.6)

f̄∗ = K (X∗, X)K(X,X)−1f, (7.7)

Cov(f∗) = K (X∗, X∗)−K (X∗, X)K(X,X)−1K (X,X∗) , (7.8)

where we have defined the posterior mean and covariance functions as f̄∗ and Cov(f∗) respec-

tively. As Figure 7.1 demonstrates, GPs are a powerful regression tool, providing not only a rea-

sonable interpolation of the unknown function in untested regions, but also uncertainty information

in those regions.

GP regression serves as a springboard into a variety of other uses of GPs, such as in classi-
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Figure 7.1: Prior and posterior for 500 predicted points X∗ and 5 equally spaced training points
X evaluated from a sine function, with 10 drawn function samples shown for each, and error bars
showing two standard deviations from the posterior mean function. A zero mean function and SE
kernel with ` = 1, σs = 1 has been used.

fication, deep networks, as priors in spatiotemporal data modelling, and in Bayesian optimisation

(Damianou and Lawrence 2013; Frazier 2018; Simpson et al. 2017; Van der Wilk et al. 2017). In

the next section, we look at Bayesian quadrature (BQ), a probabilistic method of approximating

intractable integrals using GPs.

7.2 Numerical integration

As discussed previously, the core problem of posterior inference is often the computation of an

intractable integral: ∫
f(x)p(x)dx = Ep(x)[f(x)]. (7.9)

For instance, the computation of a model evidence p(D) =
∫
p(θ|D)p(θ)dθ as the normalising

constant in a posterior, or a posterior predictive p(x∗|D) =
∫
p(x∗|D, θ)p(θ|D)dθ. Variational infer-

ence is one method of addressing this problem, and is advantageous in that it produces both an

estimate of the posterior and the evidence simultaneously in the form of the variational distribution

q and the ELBO respectively. The other methods can be divided into Monte Carlo and Bayesian

quadrature.
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7.2.1 Monte Carlo integration

Recall Simple Monte Carlo (SMC) integration (using Z to denote the unknown integral):

Z =

∫
f(x)p(x)dx ≈ 1

N

L∑
l=1

f(x̂(l)), x̂(l) ∼ p(x). (7.10)

This is an unbiased estimator of the true integral value, and using N samples x̂ drawn from the

known distribution p(x), SMC will converge to the integral as N → ∞ by the strong law of large

numbers (Robert and Casella 2004). Typically in real applications, p(x) will be difficult to sample,

or samples drawn from it will correlate poorly with informative regions of f(x) (e.g. likelihoods

with narrow peaks). Variants on SMC are used in these cases, such as importance sampling or

Markov-chain Monte Carlo methods (Hastings 1970), but they have their own issues. For instance,

importance sampling relies on a sampling distribution q̃(x) and weights samples by their relevance,

∫
f(x)

p(x)

q̃(x)
q̃(x)dx, (7.11)

then performs SMC using samples from q̃(x) with an augmented f̃(x) = f(x)p(x)/q̃(x). As ex-

plained in O’Hagan 1987, this is a common but statistically unsound way to approximate integrals,

as the sampling distribution is chosen arbitrarily, and value of the approximation would vary for

differing q̃1, q̃2, even if the same set of samples were drawn from them. Furthermore, the actual

sampled values x̂ are ignored: if the same x̂ were sampled twice, each sample would be treated

as equally informative, despite providing no new information about the unknown integrand. BQ

(Ghahramani and C. Rasmussen 2002; O’Hagan 1991) addresses these problems with a Bayesian

treatment of the unknown expectation Z.

7.2.2 Bayesian quadrature

Whereas SMC can be thought of as integration using an approximation of the prior (using a set of

samples from p(x) rather than a true integration over it), BQ can be imagined integration using an

approximation of f(x). A Gaussian process is trained on a set of evaluations fs to approximate f ,
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and then we can analytically evaluate the following integral using standard Gaussian identities:

E[Z|f s] =

∫
f̄∗p(x)dx, (7.12)

where p(x) is typically a Gaussian or mixture of Gaussians; alternatively an importance re-weighting

can be used for difficult to sample p(x), similar to Equation 7.11, provided p(x) can be evaluated.

Improvements on classical BQ include active sampling techniques, marginalising over GP hyper-

parameters, and warping the GP with a log or square root to better represent the case when f(x)

is a likelihood (Gunter et al. 2014; Osborne et al. 2012). We consider active sampling in Section

7.3.4.

7.3 BQ in variational inference

We turn our attention to the uses of BQ in variational inference, looking at Variational Bayesian

Monte Carlo (VBMC) and considering further research areas. We also consider BQ as a method of

performing intelligent subsampling for mini-batching large datasets.

7.3.1 Variational Bayesian Monte Carlo

As a reminder, our general expression for the ELBO is:

L =

∫
qφ(θ) ln

(
p(D, θ)

qφ(θ)

)
dθ

= Eθ[ln p(D, θ)] +H[qφ].

(7.13)

The ELBO is an integral, and often an intractable one, so we can use BQ to probabilistically esti-

mate it. Using BQ specifically for the purpose of VI was introduced by Acerbi 2018; Acerbi 2020 in

their VBMC algorithm. Their motivation is in using VI to approximate the posterior p(θ|D) = p(θ,D)
p(D)

with an expensive-but-possible to evaluate joint distribution (or unnormalised posterior) and in-

tractable model evidence p(D) =
∫
p(D|θ)p(θ)dθ. Samples of model parameters θs are chosen

and evaluated to generate training data θs, fs = f(θ)s, which is used to train a GP using the method

described in the previous section. Using standard Gaussian identities, the expectation over the

GP-approximated log-joint and the gradient of this expectation can be evaluated analytically The
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variational entropy term and its gradient can also be cheaply and accurately approximated using

MCMC, therefore the ELBO can be approximated in a far more Bayesian manner than standard

Monte Carlo integration. Finally the gradients are used to perform SGD optimisation on the ELBO

as usual.

7.3.2 BQ for gradient estimation

VBMC is a highly developed VI framework, but it is the only one of its kind to utilise BQ. Further

research into the applications of GPs in VI is necessary – one potential area of interest might be

in using BQ to estimate the gradient directly, as opposed to just the ELBO, to obtain low variance

estimates. This might involve utilisation of lower variance estimators like IWAE and DReG (Burda

et al. 2016; Tucker et al. 2018, see Section 5). Another area of interest is in utilising correlations

between successive gradient updates. In each variational update the log-joint is evaluated, but

it stays the same – only the variational distribution changes. Could information from previous

updates be used to improve the current gradient estimate?

7.3.3 Intelligently subsampling data

One area we considered when working on this report was that of subsampling large datasets

intelligently; more specifically, how can we improve on the common practice of using random

sampling in the calculation of gradient estimates for gradient descent optimisation? Randomness

is suboptimal; an intelligent Bayesian approach is likely to produce more accurate estimates with

fewer samples, and provide more accurate uncertainty information.

Considering the ELBO for a VI problem:

L =
1

N

N∑
n=1

∫
qφ(Zn, θ) ln

(
p(Xn, Zn, θ)

qφ(Xn, θ)

)
dθ. (7.14)

Here we use Xn, Zn to refer to a single sample xn ∈ X, zn ∈ Z repeated N times, as used for

our SGD and SNGD implementations in Section 4. We can recognise the ELBO and its gradient as
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simple Monte Carlo approximations over the data distribution p(X):

〈L〉 =
1

S

S∑
n=1

L(Xn) ≈
∫
L(X,Z, θ)p(X)dX, (7.15)

〈∇φL〉 =
1

S

S∑
n=1

∇φL(Xn) ≈
∫
∇φL(X,Z, θ)p(X)dX. (7.16)

Previously studied method of data subsampling, particularly in the case of gradient estimates,

include the Horivitz-Thompson gradient estimator (Clemencon et al. 2014; Clémençon et al. 2015),

where each sample xi is accepted with a probability πi(x) and weighted by that probability, but in

practice these weighting probabilities are hard to obtain.

We could easily train a GP on evaluations of a subset S ⊂ X to approximate the ELBO function

or any of its gradients – this would be cheaper than evaluating over the entire dataset. However for

BQ to be more effective than Monte Carlo, we need to be able to analytically evaluate
∫
L·p(X)dX,

and p(X) is the exact model evidence we are trying to approximate by maximising the ELBO.

Approximating this integral with SMC over S yields the same result as our original integral over

L as the GP is trained to pass through those points – not an interesting result, for the trouble of

training a Gaussian process (complexity O(S3)), but we do gain access to the apparatus of active

sampling used in GPs.

7.3.4 Active sampling

BQ is fundamentally a sequential sampling problem. When training the GP, we aim to choose

samples that will be most informative about the function we are approximating. Methods for doing

this include minimising the expected entropy of the integral, i.e. minimising the expected variance

of the integral Z (Osborne et al. 2012), or uncertainty sampling; this is choosing samples that

maximise the uncertainty of the integrand (Gunter et al. 2014):

x∗ = arg min
x
〈Varf |s[Z]〉, (7.17)

x∗ = arg max
x

Varf |s[f(x)p(x)]. (7.18)
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Unfortunately Varf |s[Z] =
∫∫

Cov(f∗)p(x)p(x′)dxdx′, so to be solved analytically both of these

methods require knowledge of the target evidence p(X) – useless to us for a VI problem.

In Monte Carlo integration we can obtain an unbiased estimate of the variance, from which we

can estimate error bars of our integral approximation:

Var(f) =
1

S − 1

S∑
n=1

(f(xn)−Z) , (7.19)

Var(Z) =
Var(f)

S
. (7.20)

It may be that we can choose a more representative subsample S by choosing x∗ = arg maxx Var(f∗),

i.e. by evaluating the diagonal values of the GP covariance matrix over X and choosing x∗ which

has the greatest variance. This is a form of uncertainty sampling more akin to the acquisi-

tion functions of Bayesian optimisation (Agnihotri and Batra 2020): cheap to optimise functions

which iteratively choose sampling points for GP training with some balance of exploration and ex-

ploitation. This method would be equivalent to an Upper Confidence Bound acquisition function

α(x) = λf̄∗(x) + Var(f∗(x)) with λ = 0, i.e. exploration only.

8 Conclusion

Variational inference is a crucial inference tool as it provides a fast Bayesian alternative to inef-

ficient random sampling methods. As an optimisation problem, most VI uses gradient descent,

and by considering VI algorithms with a focus on gradients, we can better compare different ap-

proaches. In this report, we have provided an overview of gradient estimation techniques and gra-

dient descent VI algorithms, including natural gradients, and demonstrated the link between the

traditional CAVI approach and gradient methods. We have produced VI algorithms from scratch

for a GMM point clustering model and demonstrated some of the strengths and weaknesses of

various methods, considering accuracy and speed. VI is a thriving area of ongoing research, and

future work in this area may consider the use of Bayesian quadrature for lower variance gradient

estimation or intelligent subsampling for Gaussian process regression, as well as lower variance

and problem-specific variational lower bounds.
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Department of Engineering Science 
 

Supplementary Questions for 4th Year Project Students 
 

 

 

Factor Answer Things to Consider Record details here 
 
Has the checklist covered all the 
problems that may arise from 
working with the VDU? 

 
  �       � 
 Yes     No 
 

   

 
Are you free from experiencing 
any fatigue, stress, discomfort or 
other symptoms which you 
attribute to working with the VDU 
or work environment? 

 
  �     � 
 Yes    No 

 
Any aches, pains or sensory 
loss (tingling or pins and 
needles) in your neck, back 
shoulders or upper limbs. Do 
you experience restricted joint 
movement, impaired finger 
movements, grip or other 
disability, temporary or 
permanently  
 
 

 

 
Do you take adequate breaks 
when working at the VDU? 

 
  �      � 
 Yes    No 

Periods of two minutes looking 
away from the screen taken 
every 20 minutes and longer 
periods every 2 hours 

Natural breaks for taking a 
drink and moving around the 
office answering the phone etc. 

 

 
How many hours per day do you 
spend working with this computer? 

 
  �      � 
 1-2     3-4 
 
  �      � 
 5-7     8 or 
           more 
 

 

 
How many days per week do you 
spend working with this computer? 

 
  �      � 
 1-2     3-5 
 
 �   
 6-7     
 

 

 
Please describe your typical 
computer usage pattern 

 
 
 
 
 
 

  
Student Declaration and Academic Approval 

 
Student Declaration: 
 
I have completed the DSE Workstation Checklist and the 
Supplementary Questions for my computer-related risk 
assessment for 4YP Project Number indicated below: 
 
 
4YP Project Number:                        «««««««« 
 
 
4YP SWXdeQW¶V Name (please print)   «««««««.. 
 
 
4YP SWXdeQW¶V SigQaWXUe:                  «««««««« 
 
 
 
 

 
Academic Approval  
 
I confirm my approval of this 4YP DSE Risk Assessment. 
 
Academic SXSeUYiVRU¶V Name: (please print)  
 
 
«««««««««««««««««««. 
 
 
Academic SXSeUYiVRU¶V SigQaWXUe: 
 
 
«««««««««««««««««««. 
 

 

I do all my work on it and spend much of my leisure time on it. I use it
basically all day, taking regular breaks and using the blue light filter.

Benjamin Gutteridge

12140 Michael Osborne
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