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Overview

* Background: MPNNs and long-range interactions

e Contributions:
* Dynamically Rewired Message Passing
 DRew + Delay

* Why DRew works
* Experimental results



Message-Passing Neural Networks

X Xg oo ) Xag e
O () N
/ Xp < Cbe Xe / Xp ( Oébc‘ ..... Xe / . b,(\_ mbcv- ............. £
......... . v
con \Cbe e > QU ( \O,Zbe ) mpg <" . my,
X, Xe X4 " Xe Xd Xe
Convolutional Attentional Message-passing

* Message passing: aggregation and update steps
e Occurs over 1-hop neighbourhood
e Several variations, but most graph neural networks are MPNNs

Figure credit: Bronstein et al 2021. Geometric Deep Learning Grids, Groups, Graphs, Geodesics, and Gauges



Challenges with MPNNs

ot

multiple
MPNN
layers

* Long-range dependency

* When the output of a MPNN depends on
distant nodes interacting with each other ,

more

—

homogenous

. . de 1

Necessitates more MPNNs layers, leading to: smbsdings
e Oversmoothing 1 Oversmoothing
* increasing network depth leading to { Oversquashing

homogeneous node representations and
thus poor performance

* Oversquashing

* “Lack of sensitivity of the output of an
MPNN at node p to the input features at an
k-hop-distant node s”

Figure credits: Topping et al 2022. Over-squashing, Bottlenecks, and Graph Ricci curvature (bottom).
Stankovié, Ljubisa, and Ervin Sejdic, eds. 2019. Vertex-frequency analysis of graph signals (top).



Long-range interactions

* Various domains use global graph
information or rely on distant node
interactions Figure 1: Molecule with

. " LRIs (dotted lines showi
 Many large graphs likely exhibit a degree s (dotted lines showing

3D atomic contact) that are
of lo ng-range de pen dence not trivially captured by the

* Several recent works looking at long-range graph structure.
interactions, as well as a set of benchmark
data SEtS Original Image final “rag-boundary’ graph
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* Wu, Zhanghao, et al. "Representing long-range context for
graph neural networks with global attention." (NIPS 2021)

* Dwivedi, Vijay Prakash, et al. "Long range graph benchmark."
(NIPS 2022{

* Di Giovanni, Francesco, et al. "On over-squashing in message
passing neural networks: The impact of width, depth, and
topology.” (ICML 2023)

* Ma Lihel?f, et al. "Graph Inductive Biases in Transformers
without essage Passing." (ICML 2023).
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Figure credits: Dwivedi et al 2022, Long Range Graph Benchmark



Graph Rewiring

Static graph rewiring

* Graph topology itself is
altered to make it ‘friendlier’

* E.g.
* Dropping or adding nodes or
edges (DropEdge, DropGNN)
* Global nodes/fully adjacent
layers

* Rewiring according to a
spectral/connectivity measure
(SDRF, DIGL)

e Positional encoding
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Computational graph rewiring

* Rather than changing input graph
itself, you change the way you allow
information to propagate during
message passing

* E.g.

* Multi-hop MPNNs (Shortest Path
Network, N-GCN, MixHop, k-hop GNN)

* Graph Transformers

. D This is our focus



Proposal

* Transformers throw away the graph
topology by making graphs fully-connected

* Multi-hop MPNNs are similar:
* They make the computational graph denser

* They lose the notion of information flow
through the graph, i.e. that nodes that are
closer should interact earlier

* How can we exploit these inductive
biases?

Multi-hop MPNN



Intuition: Dynamic Rewiring

“...aggregating information over distant nodes that goes
beyond the limitations of classical MPNNs, but respects the
inductive bias provided by the graph: nodes that are closer
should interact earlier in the architecture.”

“We argue that it is important not simply how two node states
interact with each other, but also when that happens.”



Background: MPNNs

* MPNN: 1 : :
* 1-hop local a’g) — AGG(E) ({h§ ) L) € Nl (Z)}) )
aggregation
w0 Up® (50,60,
1-hop
e k-h .
neigohpbourhood: neighbourhood

Shortest path distance

Ni(t) :=={j € V : da(i,j) = k}.



Dynamically Rewired MPNN

\n\%m o, = AGG® ({h§£) I EM (i)}) ! Separate aggregation for
Rl — gp® (hga,a,g@) | each k-hop neighbourhood

o) = ACGY ({1 : j € Ni(@)}). 1 <k <L 41
A = UPY (h, ), ) (5)

|

Reduces to vanilla MPNN if (£ + 1)th hop only
AGGy = Ifork > 1 aggregated from layer ¢




£=0 c=0

MPNN DRew-MPNN

ol = AGGY ({r{" 1 j € Mi(i)}), al) = AGGY ({h{" : j € Ni(@)}), 1 <k <e+1

h,ng) — UpWw (hge),age)) 7 h§£+1) _ UP,(f) <h§2)7a§f1)7 o 7CLz(.’ﬁngl). (5)



Introducing delay

Currently:

* MPNNSs: nodes i, J interact with a constant delay given by their
distance — leading to the same lag of information

 DRew: nodes interact only from a certain depth of the architecture,
but without any delay

What if we consider the state of j as it was when the information ‘left’
to flow towards i?



Introducing delay: vDRew

* What if we consider the state of j as it was when the information

‘left’ to flow towards i?
k: current k-hop

* Delay: Ty(k) p— ma,X(O, k — I/) v: ‘rate’ hyperparameter

> (i.e. the hop radius below which node
communication is instantaneous)

af) = AGG ({hS" ™™ j e M(@)}),1 <k < £+1

/41 14 14 14 14
R = UPY (h9,af,.. a),,). (6)
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The graph-rewiring perspective:
vDRew as distance-aware skip
connections

(c) vtDRew
(a) Classical MPNN (b) DRew
* Multi-hop, horizontal AND vertical skip
* 1-hop, * Multi-hop, horizontal only connections, through distance and time
horizontal « Computational graph (layer)
only gradually filled « Skip connections between different nodes,

dependent on geometric distance



DRew instantiations of common MPNNSs
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Why does vDRew help with over-squashing?

e Jacobian as a measure of sensitivity between nodes
(Topping 2022)

* For vanilla MPNN, same adjacency A used in each layer
(i.e. 1-hop aggregationg with which we can bound the (r)
Jacobian by power A" tor nodes i, j at hop distance r 3hz-

* Due to skip connections, v{ DRew-GCN’s sensitivity bound (0)
is different — see below 3hj

* Nodes at distance r can now interact via products of
message-passing matrices containing fewer

than r factors

< c(A");j,

* Oversquashing arises due to the entries (r)
IV ! = { oh\
i,j of normalised A™ decaying to zero i | < C( }: ( I I (+*); ))
exponentially with r anO | — ) L *
J 17T L=T 1yeeeyvg

* Powers of ['* (vij € I') are different unlike
A, therefore oversquashing is mitigated



Why does vDRew help with over-smoothing?

* Over-smoothing occurs because by the time information from node i
reaches distant node j, it has been mixed many times with
neighbours

* Skip connections with delay allow i to ’see’ j before too much local
smoothing has occurred

* Choice of delay parameter v can be considered amount of local
smoothing
* High v: more local smoothing
* Low v: less



Experiments

* Long-range graph benchmark
e Chemistry and computer vision
* Graph-, node- and edge-level tasks

* QM9 (see paper)
* Chemistry, multi-task regression

e RingTransfer
* Synthetic ‘true’ long-range task

* Peptides-func ablation
 Demonstrate impact of delay parameter v for for task from LRGB



Performance on real-world datasets

Table 1. Classical MPNN benchmarks vs their DRew variants (without positional encoding) across four LRGB tasks: (from left to right)
graph classification, graph regression, link prediction and node classification. All results are for the given metric on test data.

PCOM-Contact PascalVOC-SP

Peptides—func Peptides—-struct

Model

APt MAE | MRR 1 F1 ¢
GCN  0.5930+0.0023 0.3496+0.0013 0.3234+0.0006 0.1268:0.0060
+DRew  0.69960.0076 0.2781::0.0028 0.3444+0.0017 0.1848+0.0107
GINE  0.5498+0.0079 0.3547+0.0045 0.3180+0.0027 0.1265+0.0076
+DRew  0.6940:0.0074 0.2882:+0.0025 0.33000.0007 0.2719+0.0043
GatedGCN  0.5864+0.0077 0.3420+0.0013 0.3218+0.0011 0.2873+0.0219
+DRew  0.6733:0.0094 0.2699:0.0018 0.32930.0005 0.3214+0.0021

Tasks from long-range graph benchmark; 4 different tasks

DRew models consistently beat their non-DRew counterparts
Fixed parameter budget of 500k
Better performance even though no edge features used in DRew

» for simplicity; we would expect use of edge features to further improve results



Table 2. Performance of various classical, multi-hop and static rewiring MPNN and graph Transformer benchmarks against DRew-
MPNNSs across four LRGB tasks. The first-, second- and third-best results for each task are colour-coded; models whose performance

are within a standard deviation of one another are considered equal.

Static
rewiring
benchmark

Multi-hop
MPNN
benchmark

DRew mostly
beating or
on-par with
Transformers

Peptides—-func

Peptides-struct

PCOM—-Contact

PascalVOC-SP

Madel AP 1 MAE | MRR 4 F1 4

GCN 0.5930+0.0023 0.3496+0.0013 0.3234+0.0006 0.1268+0.0060
GINE 0.5498+0.0079 0.3547+0.0045 0.3180+0.0027 0.1265+0.0076
GatedGCN 0.5864+0.0077 0.3420+0.0013 0.3218+0.0011 0.2873+0.0219
GatedGCN+PE 0.6069+0.0035 0.3357+0.0006 0.3242+0.0008 0.2860+0.0085
DIGL+MPNN 0.6469+0.0019 0.3173+0.0007 0.1656+0.0029 0.2824+0.0039
DIGL+MPNN+LapPE 0.6830+0.0026 0.2616x0.0018 0.1707%0.0021 0.2921+0.0038
MixHop-GCN 0.6592+0.0036 0.2921+0.0023 0.3183+0.0009 0.2506+0.0133
MixHop-GCN+LapPE 0.6843+0.0049 0.2614+0.0023 0.3250+0.0010 0.2218+0.0174
Transformer+LapPE 0.6326+0.0126 0.2529+0.0016 0.3174+0.0020 0.2694+0.0098
SAN+LapPE 0.6384+0.0121 0.2683+0.0043 0.3350+0.0003 0.3230+0.0039
GraphGPS+LapPE 0.6535+0.0041 0.2500+0.0005 0.3337+0.0006 0.3748+0.0109
DRew-GCN 0.6996+0.0076 0.2781+0.0028 0.3444+0.0017 0.1848+0.0107
DRew-GCN+LapPE 0.7150+0.0044 0.2536+0.0015 0.3442+0.0006 0.1851+0.0092
DRew-GIN 0.6940+0.0074 0.2799+0.0016 0.3300+0.0007 0.2719+0.0043
DRew-GIN+LapPE 0.7126+0.0045 0.2606+0.0014 0.3403+0.0035 0.2692+0.0059
DRew-GatedGCN 0.6733+0.0094 0.2699+0.0018 0.3293+0.0005 0.3214+0.0021
DRew-GatedGCN+LapPE 0.6977+0.0026 0.2539+0.0007 0.3324+0.0014 0.3314+0.0024




RingTransfer Source: Xo v =

r:—\r—\r—\r—\r—:x

* Synthetic task for testing LR
dependence

* Nrings, lengthn

* Target node must interact
with source node n/2 hops
away

0
1
Target: Xn/2 = |0
0
0

* Fixed n/2 layers (needed for %

interaction) =
« C = 5 classes <
* MPNN/multi-hop MPNN < | 20 40 60

Drew < Drew + Delay +#Nodes

* MPNN << SP-GCN (multi-hop MPNN) << DRew << DRew + Delay



Fixed d ablation on peptides-func

* Looking at effect of
delay hyperparam

e Param constraint
lifted

Model
* Delay reduces A, 11 DRew-GCN
impact of fw — — vy/;DRew-GCN
oversmoothing = DRew-GCN
o With full delay, 1 — GON

performance 0.55
improves with more
layers. Very unusual 0.5

for MPNNs 5 10 15 20
#Layers



Conclusion
* Two contributions: Dynamically Rewired message passing and Delay

* Framework applicable to any MPNN
* Reduces over-smoothing and over-squashing

* Improves on vanilla/multi-hop MPNNs, static rewiring approaches
and Transformers for synthetic and real-world long-range tasks

Future Work

* |nvestigating expressive power
* Reduce parameter scaling (good progress already on this front!)

e Alternate distance measures



Thanks for

watching!
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